
WCAMPWA

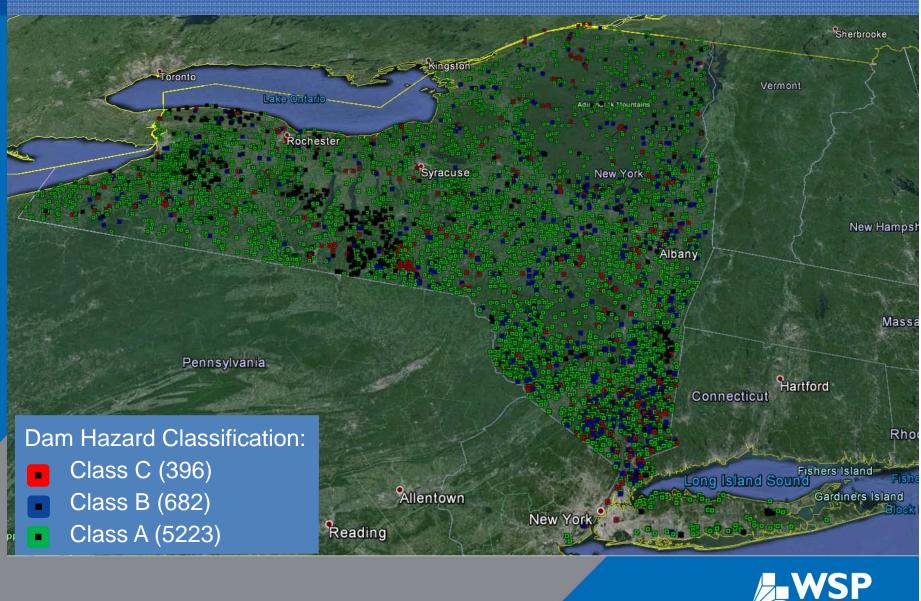
LUNCH AND LEARN DAM SAFETY PRESENTATION REGULATORY REQUIREMENTS FOR DAM ENGINEERING ASSESSMENTS IN NEW YORK Allan Estivalet, PE

September 10, 2015

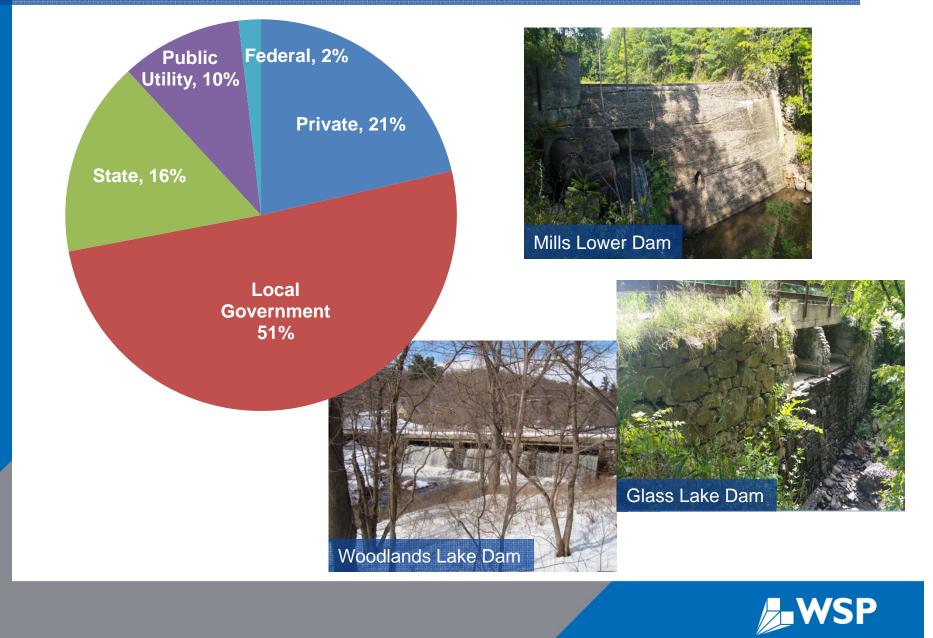
NEW YORK STATE DAM SAFETY REGULATIONS

Following the failure of Hadlock Dam in Fort Ann, NY in 2005, the New York Code of Rules and Regulations, Part 673: Dam Safety Regulations was revised.

Revisions to New York's Dam Safety Regulations became effective on August 19, 2009.


NEW YORK STATE DAM SAFETY REGULATIONS

NY Dam Safety Program oversees owners to protect downstream lives, property, and natural resources. The Program's core mission includes:


- Regulatory dam inspection by NYSDEC engineers
- Technical review of proposed work
- ↗ Repair or removal of unsafe dams
- > Emergency planning

NYSDEC DAMS INVENTORY ~7,000 Dams

NEW YORK STATE REGULATED DAM OWNER TYPES

NYSDEC DAM HAZARD CLASSIFICATION

Class A – Low Hazard Dam

Dam failure is **unlikely** to result in damage to anything more than isolated and unoccupied buildings and undeveloped lands.

Class B – Intermediate Hazard Dam

Dam failure is **likely** to pose the threat of personal injury or result in substantial economic, environmental, or infrastructure loss. Loss of human life is not expected.

Class C – High Hazard Dam

Dam failure is **likely** to result in widespread substantial economic, environmental, or infrastructure loss. Loss of human life is likely.

NYSDEC DAM SAFETY REGULATIONS (Updated Aug. 19, 2009)

		DAM HAZARD CLASSIFICATION		FICATION
REQUIREMENT	FREQUENCY	C High	B Interm.	A Low
Inspection & Maintenance Plan (I&M Plan)	On-going	Х	Х	х
Annual Certification	Annually by January 31	Х	Х	Х
Emergency Action Plan (EAP)	Annual review and update	Х	Х	N/A
Dam Safety Inspection	2 years for Class C 4 years for Class B	Х	Х	N/A
Engineering Assessment (EA)	Every 10 years	Х	Х	N/A

ENGINEERING ASSESSMENTS PROCESS

Records Review

- Design and construction	On-site Engineering Inspection and Investigation		
records - Dam - Operation and Insp maintenance - Haz records - Haz class - Previous records engineering - Othe inspection - Othe	- Dam Safety Inspection - Hazard	Engineering Review, Calculations, and Conclusions	
	 classification reconnaissance Other investigations as necessary 	 Hazard Classification Hydrology & Hydraulic analysis Structural stability analysis Review of the dam's Emergency Action Plan (EAP) 	
		- Conclusions and recommendations	

ENGINEERING ASSESSMENT REPORT FILED WITH NYSDEC

RECORDS REVIEW

New York State Department of Environmental Conservation Division of Water Bureau of Flood Protection & Dam Safety, 4th Floor 625 Broadway, Albany, New York 12233-3504 Phone: (518) 402-8185 + Fax: (518) 402-9029 Website: <u>www.dec.ny.gov</u>

Become fully acquainted with the dam and its appurtenant structures as well as construction and performance history through review of the dam's design, construction, and operational records.

↗ Owner's Dam File:

- Reports related to design, repairs, geology, engineering analyses, inspections, etc.
- ↗ Inspection and Maintenance (I&M) Plan
- Records for maintenance and completed and/or planned repairs
- Emergency Action Plan including inundation maps

ENGINEERING ASSESSMENTS PROCESS

Records Review

- Design and construction	On-site Engineering Inspection and Investigation		
 construction records Operation and maintenance records Previous engineering inspection reports 	 Dam Safety Inspection Hazard classification reconnaissance Other investigations as necessary 	Engineering Review, Calculations, and Conclusions - Hazard Classification - Hydrology & Hydraulic analysis - Structural stability analysis - Review of the dam's Emergency Action Plan (EAP) - Conclusions and recommendations	6

ENGINEERING ASSESSMENT REPORT FILED WITH NYSDEC

ON-SITE ENGINEERING INSPECTION & INVESTIGATION DAM SAFETY INSPECTION

Visual Inspection:

Perform a comprehensive examination of visible physical features of the dam and its appurtenant structures

Assign a condition rating:

"Unsafe" 7 "Deficiently maintained"
 "Unsound" 7 "No deficiencies noted"
 Prepare a Safety Inspection Report, including:

- Review and evaluation of data generated
- Narrative results of the visual inspection
- Schedule for any corrective actions necessary to resolve deficiencies

DAM SAFETY INSPECTION FOR NYSDEC

Louis Enten Pond Dam #1, Putnam Valley, NY

NYSDEC at Howlands Dam, Conquest, NY

Madison Reforestation Dam , Town of Nelson, NY

Schoonmaker Lake Dam, Blooming Grove, NY

ON-SITE ENGINEERING INSPECTION & INVESTIGATION FLOODPLAIN INSPECTION

Dam Hazard Classifications are assigned based on the potential impact of a dam failure on downstream areas.

Features in the floodway's path identified during field reconnaissance include:
7 Buildings
7 Roads
7 Railroads
7 Environmentally sensitive areas

MORE LOTELES MARCON

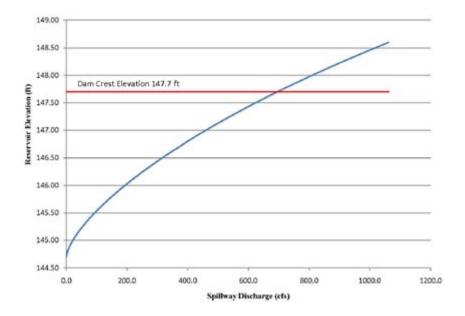
ON-SITE ENGINEERING INSPECTION & INVESTIGATION On-Site Investigations (for engineering analyses)

Subsurface investigation
Survey
Topographic
Bathymetric

ENGINEERING ASSESSMENTS PROCESS

Records Review

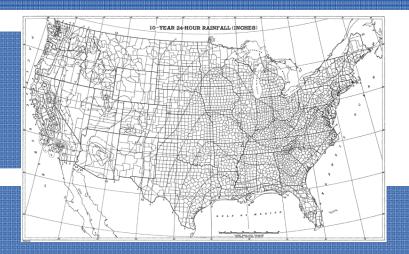
- Design and construction	On-site Engineering Inspection and Investigation		
- Operation and maintenance	- Dam Safety Inspection - Hazard	Engineering Review, Calculations, and Conclusions	
records - Previous engineering inspection reports	classification reconnaissance - Other investigations as necessary	 Hazard Classification Hydrology & Hydraulic analysis Structural stability analysis Review of the dam's Emergency Action Plan (EAP) Conclusions and 	
		recommendations	


ENGINEERING ASSESSMENT REPORT FILED WITH NYSDEC

ENGINEERING REVIEW, CALCULATION & CONCLUSIONS HYDROLOGIC AND HYDRAULIC ANALYSIS

Evaluation of the dam's spillway capacity

- The spillway should have adequate capacity to pass the Spillway Design Flood (SDF)
- Assuming no inflow, the spillway should have sufficient discharge capacity to evacuate 75% of the storage between the maximum design high water and the spillway crest within 48 hours.
- Velocities in spillway should not exceed the maximum permissible velocities (non-erodible velocities) of the spillway materials.


Hazard Classification	Spillway Design Flood (SDF)
А	100 year
В	150% of 100 year
С	50% of PMF

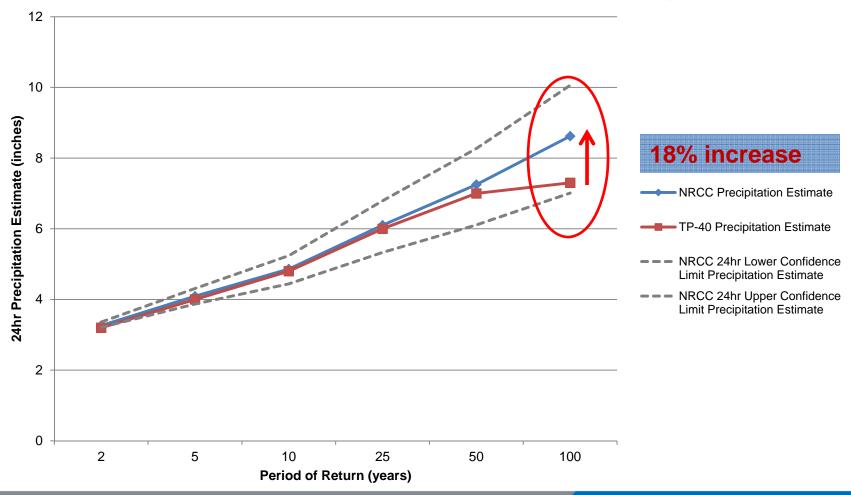
TECHNICAL PAPER (TP) 40 vs. NORTHEAST REGIONAL CLIMATE CENTER (NRCC) PRECIPITATION ESTIMATES

TP-40 7 Published in 1963

Nation-wide maps

NRCC

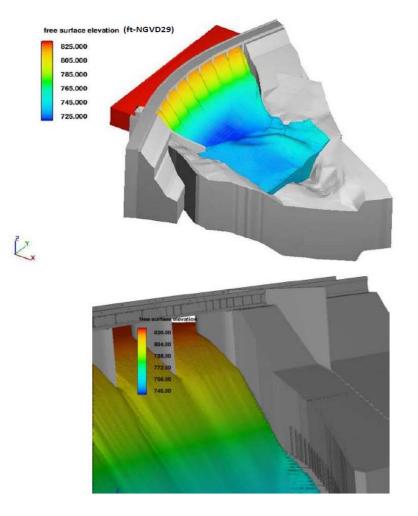
Data based on 900 data-collection stations with improved rainfall collection technology


Precipitation tables continually updated every two months Climate projections performed by NRCC for the Northeast predict an increase in precipitation of:

↗ Up to 5% by 2020, 10% by the 2050's, 15% by the 2080's

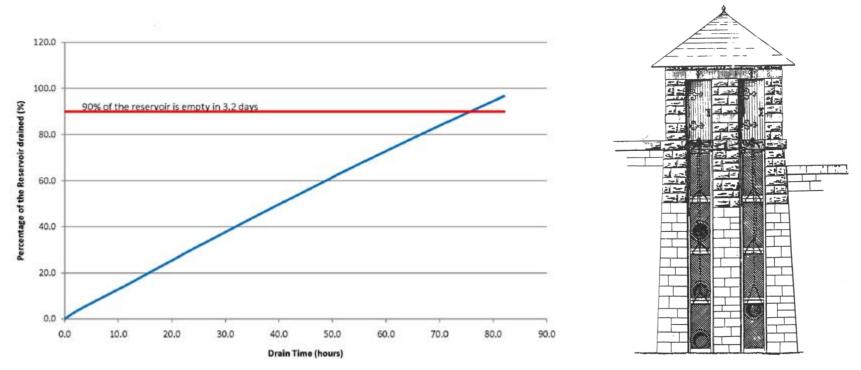
COMPARISON OF NRCC vs. TP-40 PRECIPITATION ESTIMATES

Comparison of Precipitation Estimates according to NRCC and TP-40 for 100 Year 24 Hour Rainfall in Westchester County, NY



ENGINEERING REVIEW, CALCULATION & CONCLUSIONS HYDROLOGIC AND HYDRAULIC ANALYSIS

Evaluation of the dam's spillway capacity


Rio Dam Project, Forestburgh, New York (2014-ongoing) Computational Fluid Dynamic (CFD) Flow 3D analysis

ENGINEERING REVIEW, CALCULATION & CONCLUSIONS HYDROLOGIC AND HYDRAULIC ANALYSIS

Evaluation of the dam's outlet works (reservoir drain) capacity

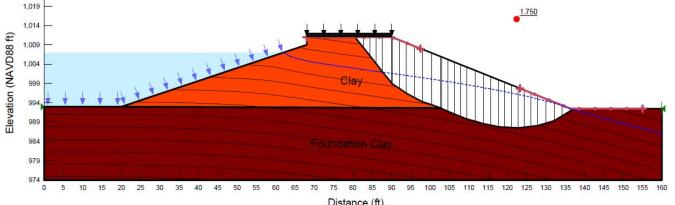
Wilkie Dam Gate House, Margaretville, New York

ENGINEERING REVIEW, CALCULATION & CONCLUSIONS STRUCTURAL STABILITY ANALYSIS

Evaluation of the dam's structural stability for the following loading cases:

- Case 1: Normal Loading Condition
- Case 2: Normal Loading Condition + Ice
- Case 3: Spillway Design Flood Condition (SDF)
- Case 4: Seismic Loading Condition (Westergaard & Case 15KIP/L/ Mononobe-Okabe methods)

ENGINEERING REVIEW, CALCULATION & CONCLUSIONS STRUCTURAL STABILITY ANALYSIS


Evaluation of the dam's structural stability for the following loading cases:

- Case 1: Normal Loading Condition (steady seepage)
- Case 2: Spillway Design Flood Condition (steady seepage)
- Case 3: Sudden drawdown

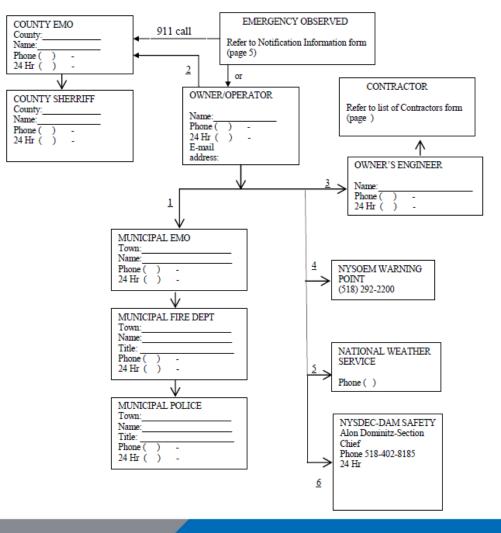

1,024

Case 4: Earthquake/liquefaction

Chauncey Stillman Embankment Dam, Amenia, New York Subsurface investigation & embankment slope stability analysis

EMERGENCY ACTION PLAN (EAP)

I.


Emergency Notification SAMPLE EMERGENCY NOTIFICATION FLOWCHART

Owners of Class B and C dams are required to develop an EAP.

Critical components of an EAP:

Emergency notification procedures

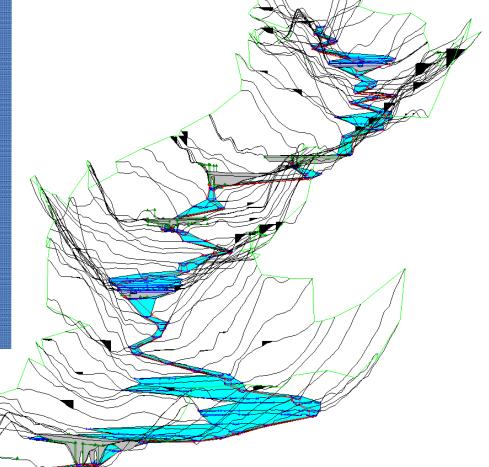
↗ Inundation maps

ENGINEERING ASSESSMENTS PROCESS

Records Review

- Design and construction	On-site Engineering Inspection and Investigation		
records - Operation and maintenance	- Dam Safety Inspection - Hazard	Engineering Review, Calculations, and Conclusions - Hazard Classification	5
records - Previous engineering inspection reports	classification reconnaissance - Other investigations as necessary	 Hydrology & Hydraulic analysis Structural stability analysis Review of the dam's Emergency Action Plan (EAP) 	
		- Conclusions and recommendations	

ENGINEERING ASSESSMENT REPORT FILED WITH NYSDEC



DAM HAZARD CLASSIFICATION – CASE STUDY Louis Enten Pond Dam #1, Putnam Valley, NY

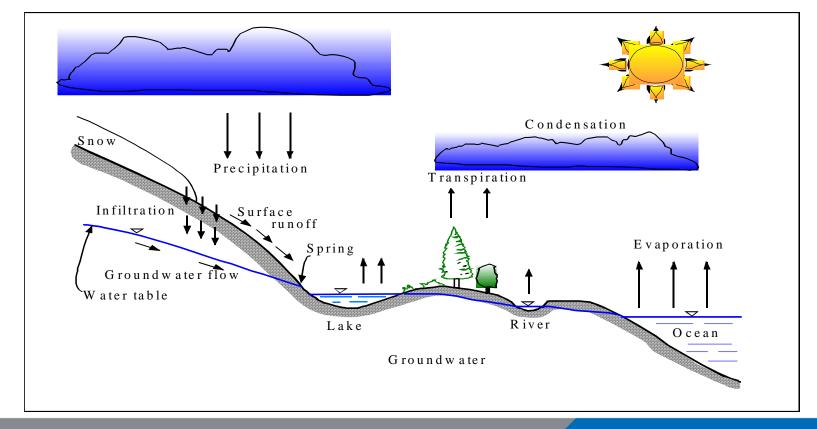
Critical component of the assessment

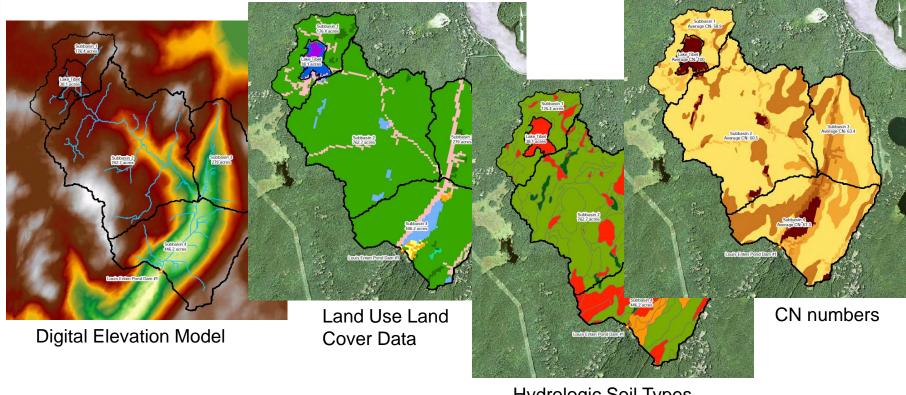
Hazard Classification:

- Desktop review of the area downstream from the dam
- ↗ River reconnaissance
- Hydrologic and hydraulic analysis

Louis Enten Pond Dam #1 (State ID # 213-3354)

↗ Desktop review of the area downstream from the dam


↗ River reconnaissance/data collection


Louis Enten Pond Dam #1 (State ID # 213-3354)

↗ Hydrologic & Hydraulic analysis (Hydrologic Cycle)

Louis Enten Pond Dam #1 (State ID # 213-3354)

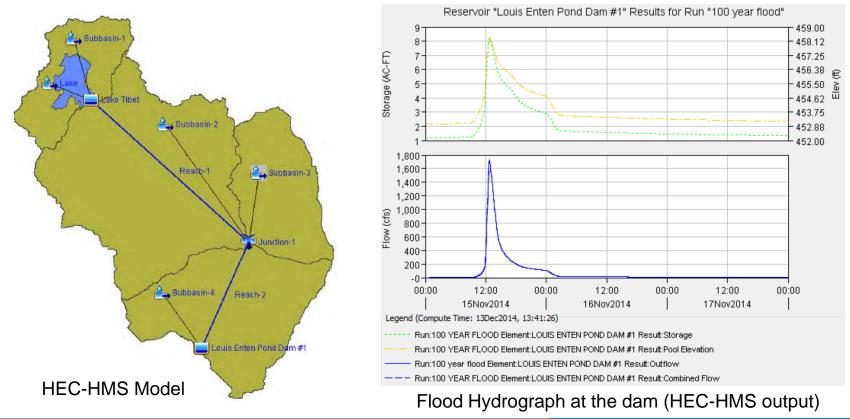
↗ Hydrologic & Hydraulic analysis (Hydrologic Analysis)

Hydrologic Soil Types

Louis Enten Pond Dam #1 (State ID # 213-3354)

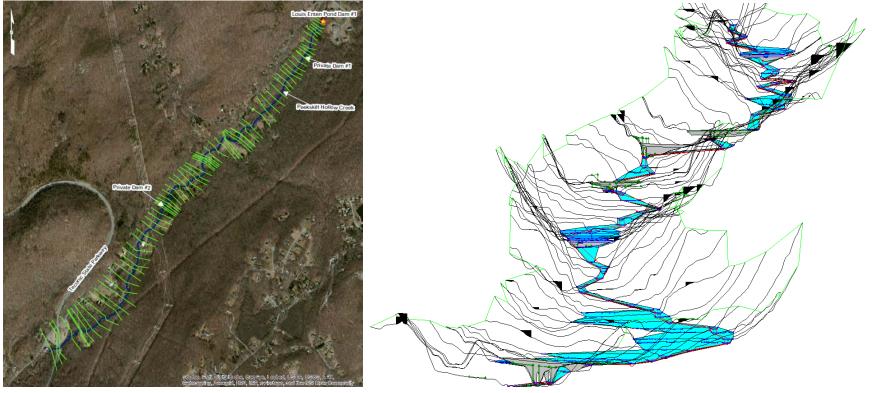
Hydrologic & Hydraulic analysis (Hydrologic Analysis)

Bathymetric survey data data


Bathymetric map

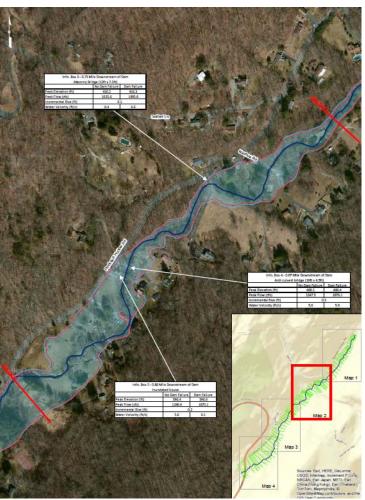
Elevation	Area		
[NAVD88]	[sq ft]	[acres]	
446.5	6	0.00	
448	67.85	0.002	
449	177.25	0.004	
450	2128.96	0.05	
451	9780.87	0.22	
452	22054.03	0.51	
453	36291.96	0.83	
454	44882.88	1.03	
455	52135.75	1.20	
456	60751.88	1.39	
457	68451.03	1.57	
458	73782.17	1.69	
459	78558.53	1.80	
460	83032.37	1.91	
461	87624.04	2.01	
462	92679.25	2.13	
463	99671.83	2.29	
464	105241.75	2.42	
465	111812.32	2.57	
466	119470.92	2.74	
467	126472.72	2.90	
468	131930.21	3.03	
469	137366.22	3.15	
470	142001.64	3.26	

Louis Enten Pond Dam #1 (State ID # 213-3354)


7 Hydrologic & Hydraulic analysis (Hydrologic Analysis)

Louis Enten Pond Dam #1 (State ID # 213-3354)

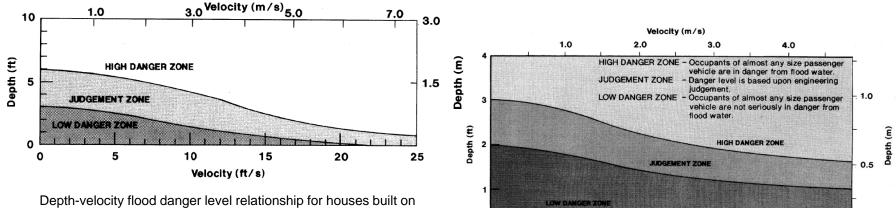
↗ Hydrologic & Hydraulic analysis (Hydraulic modeling)


Peekskill River – HEC-RAS Model

Louis Enten Pond Dam #1 (State ID # 213-3354)

Hydrologic & Hydraulic analysis(Dam Break Analysis and Inundation Mapping)

Info. Box 5 - 0.88 Mile Downstream of Dam			
Inundated house			
No Dam Failure Dam Failure			
Peak Elevation (ft)	396.4	396.6	
Peak Flow (cfs)	1246.4	1875.1	
Incremental Rise (ft)	0.2		
Water Velocity (ft/s)	5.6 6.1		



Louis Enten Pond Dam #1 (State ID # 213-3354)

7 Hydrologic & Hydraulic analysis (Hazard Classification Determination)

The effects of the potential dam failure floods on downstream lives, property and the environment determine the hazard classification.

0

Depth-velocity flood danger level relationship for houses built on foundations (ACER Technical Memorandum No. 11 from USBR)

Depth-velocity flood danger level relationship for passenger vehicles (ACER Technical Memorandum No. 11 from USBR)

8 Velocity (ft/s)

6

10

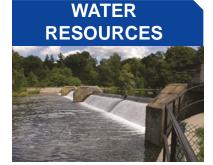
12

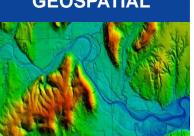
14

16

WSP DAMS AND WATER RESOURCES GROUP

SURVEY




CONSTRUCTION MANAGEMENT

GEOSPATIAL

ENVIRONMENTAL

WSP DAMS AND WATER RESOURCES GROUP

Allan Estivalet, PE

Dams and Water Resources Group Leader

WSP 555 Pleasantville Road, South Building Briarcliff Manor, NY 10510 Direct: 914-449-9110 Main: 914-747-1120 Mobile: 718-473-2427

QUIZ QUESTIONS

 How many state-regulated dams are there in New York?
 Approximately 7,000

2. What was the catalyzer for the change in NYSDEC dam safety regulations in 2009?
7 Failure of the Hadlock Dam in 2005

3. What is the highest hazard classification category for state-regulated dams?

∧ Class 'C'

QUIZ QUESTIONS (continued)

4. What are the two areas that raise the most concerns for dam engineers?

Spillway capacityStructural stability

5. What is the percent increase in precipitation between TP-40 and NRCC precipitation estimates for the 100 year 24hr rainfall in Westchester County, NY?
 7 18% increase

WSP DAMS AND WATER RESOURCES GROUP

Allan Estivalet, PE

Dams and Water Resources Group Leader

WSP 555 Pleasantville Road, South Building Briarcliff Manor, NY 10510 Direct: 914-449-9110 Main: 914-747-1120 Mobile: 718-473-2427

